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Abstract-In this paper. a method is presented to study the frec vibrations of a rotating truncated
circular conical shell with simply-supported boundary cnnditions. The method is based on the use
of Love's first approximation theory and it includes the effects of initial hoop tension and the
centrifugal and coriolis accelerations. Results are obtained for the frequency characteristics at
different modes and various geometric properties. the effects of cone angle on the frequency
characteristics are also discussed. To validate the present analysis. comparisons are made with a
very long rotating cylindrical shell and a non-rotating truncated circular conical shell and very good
agreement is obtained. C 1997 Elsevier Science Ltd.

Il\TRODUCTIOl\

Shell structures are increasingly being used in many industries and as a consequence, the
vibration of cylindrical shell structures has been extensively studied. This has been extended
to studies on the vibration of rotating cylindrical shell as there are also engineering appli­
cations of a rotating shell in industry. for example. in the drive shafts of gas turbines,
motors and rotor systems.

Bryan (1890) studied a rotating cylinder using the analysis of a spinning ring and
discovered the travelling-mode phenomenon. The effects of coriolis acceleration on the free
vibration of an infinitely long rotating cylindrical shell were investigated using a ring mode
by Oi Taranto and Lessen (1964) ; Srinivasan and Lauterbach (1971) also studied a similar
problem. Works on rotating composite cylindrical shells have been carried out by Rand
and Stavsky (1991) and Chun and Bert (1993). A finite element analysis for rotating shells
has been undertaken by Chen et al. (1993). Recently extensive works on the vibration of
cylindrical sheiL both stationary and rotating. have been carried out by the first author.
The effects of boundary conditions on the frequency characteristics for a multi-layered
cylindrical shell using beam functions were studied by Lam and Loy (I 994a). Analysis of
rotating laminated cylindrical shells using different thin shell theories have also been carried
out by Lam and Loy (1995a). Studies have also been carried out on rotating laminated
composite (Lam and Loy. 1994b) and sandwich-type cylindrical shells (Lam and Loy.
1995b).

A natural progression to studies on the vibration of cylindrical shell structures is to
extend it to conical shell structures. This has in fact been done on vibration of stationary
conical shells. however extensive search of the literature has thus far shown that no work
on rotating conical shell has been carried out.

Bacon and Bert (1967) used Rayleigh--Ritz method to study free vibration of both
isotropic and orthotropic conical shells. The effects of transverse shear deformation have
also been included in a similar study by Kayran and Vinson (1990). Sivadas and Ganesan
(1991. 1992) used a semi-analytical finite element method to study vibration of laminated
conical shells of varying thickness. Recently. Tong (I993a. I993b) has carried out studies
on the free vibration of isotropic. orthotropic and composite laminated conical shells.

Noting the lack of published works on the vibration of rotating conical shells. the
present paper presents a method based on Love's first approximation theory to study the
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free vibration of a rotating truncated circular conical shell with simply-supported boundary
conditions. The method is an extension of the first author's previous works, however as
can be seen later, the amount of analysis required to extend the study from rotating
cylindrical shell to rotating conical shell is quite considerable. Results are presented on the
frequency characteristics of rotating truncated circular conical shell, the influences of
various geometrical properties on the frequency characteristics are also considered in the
present paper. The present formulations are also validated against results available in the
literature for the vibration of an infinitely long rotating cylindrical shell and a stationary
conical shell and found to be accurate.

GOVERNING EQUATIONS AND \lUMERICAL IMPLEMENTATION

Consider a truncated circular conical shell rotating about its symmetrical and hori­
zontal axis at an angular velocity Q as shown in Fig. I. In the figure, 'J. is the cone angle, L
the length, h the thickness and a and b are the radii at the two ends, respectively. The
reference surface of the conical shell is taken to be at its middle surface where an orthogonal
co-ordinate system (x,y,:::) is fixed and r is a radius at co-ordinate point (x,y,z). The
deformations of the rotating conical shell in the x, y and::: directions are defined by 11, D, IV,

respectively.
Chen ef al. (1993) obtained the general equations for the vibration of rotating shells

of revolution by using the linear approximation method. In their paper, the fundamental
equilibrium equations were established by vector derivations and then asymptotically
expanded into two groups of equations corresponding, respectively, to the basic and
additional states. The former group of equations is referred to the equilibrium equations
for the centrifugal forces. The latter group is the equation of motion involving the coriolis
forces. The superimposition of these two state equations yields the general governing
equations for the vibration of rotating shells of revolution.

Based on these general equations (see Chen ef al., 1993), transforming their curvilinear
co-ordinate system into the present orthogonal co-ordinate system and then imposing the
geometric characteristics of the rotating conical shell on the equations, the governing
equations of motion for a truncated circular rotating conical shell can be derived directly
as

(I)

z, w

b

Fig. I. The geometry of a truncated circular conical shell.
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1'- I (;f ct-

here.

I' = r(x) = a+xsin'1. (4)

(5)

where p is the density of the conical sheIL N3 is defined as the initial hoop tension because
of the centrifugal force effect; N[ and M[ are the force and moment resultants, respectively,
and can be represented by

.~h ::!

(.W,.A10,M,0) = I (0'"0'0, U'/I)': d.:,
'" h:2

(6)

The geometric relations of deformations for the reference surface of the rotating conical
shell can be written as

I (~I' u sin :x + ll' cosY.
(', = -~- +

- rdJ I'

I (~U el' I'sinCi.
('12=---:::;-+--:::;----

I' cfJ cx I'

"I

(7)

here ('I and ('2 are the strains of the reference surface in the meridional direction and in the
circumferential direction. respectively, ('12 is the shear strain of the reference surface and "I,
"2 and "12 are the reference surface curvatures, respectively.

Based on Love's first approximation theory (1952). the strain component at the co­
ordinate point (x.)',.:) may be defined by
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e y = c j +~J{l

(8)

where e, and eo are the strains in the meridional and circumferential directions, respectively,
and e,o is the shear strain at a distance:: from the reference surface.

For the isotropic conical shell, the constitutive relations may be represented by

{I 0 0 0 0

p 0 0 0 0

N, l-p CI
0 0 0 0 0

No 2 C'2

;V,o Eh h 2 {Ih' (' 12
---- 0 0 0 --- -_.- 0 (9)

/'vl, (I _ p2) 12 12 h'l

lv/o phc hC
"2

/v1,(/ 0 0 0 --- -- 0
12 12

"I C

0 0 0 0 0
(I - p)h 2

12

where E and p are the modulus of elasticity and Poisson's ratio, respectively,
For the truncated circular rotating conical shell. the simply-supported boundary con­

ditions at both ends are given by

["=0,1\"=0, N,=O. M,=O atx=O,L.

The displacement field may be taken as

(
mITx)u = U cos -Z -- cos (nO + OJt)

(
mITX')'[" = V sin--L sin (nO + wt)

(
,nIT \' \

1\' = W sin L' )cos (nO +wt)

(10)

(II)

where w(rads I) is the natural circular frequency of the present conical shell and n is an
integer representing the circumferential wave number of the shell.

It is obvious that the trial function (11) can accurately satisfy the geometric boundary
conditions and approximately satisfy the force boundary conditions. but a comparison of
the calculating results we obtain with those available in the open literatures concerning
rotating cylindrical shell and non-rotating conical shell shows good agreement. as shown
in the following Table I and Table 2, And furthermore, for such complicated partial
differential equations with variable coefficients (I )-(3) as we discuss in this paper, the trial
function (II) is obviously simpler and thus more applicable,

Substituting equation (7) into equation (9) and then substituting the resulting
expression into equations (I )-(3), the governing equations obtained are a set of partial
differential equations with variable coefficients; in other words, the coefficients of the
differential operator in the equations are functions of the coordinate variable x, The
simplified expressions of the resulting eq uations are given as follows:
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Table 1. Comparison of the frequency parameter! = w* = wb..; ((1- /1')1'/ E) for
the free vibration of a very long rotating cylindrical shell by taking IX = 0 in the

present formulations (m = L /1 = 0.3. R = a = b = 1. h/b = 0.002)

2187

o (rps)

0.05

0.1

Chen el al. (1993) Present results
n wt wt w~ wt
2 0.00167 0.00142 0.00170 0.00145
3 0.00448 0.00429 0.00450 0.00431
4 0.00848 0.00833 0.00850 0.00835
5 0.01370 0.01353 0.01367 0.01355

2 0.00180 0.00130 0.00189 0.00139
3 0.00457 0.00419 0.00465 0.00428
4 0.00855 0.00826 0.00863 0.00834
5 0.01371 0.01347 0.01379 0.01355

Subscripts band f denote the backward and forward waves, respectively. From
equation (45) of Chen el al. (1993) :

* 2n !n'(n'-11' Eh' n4 +3,
WI> = -,---0+ I , ----;-----. + ----0-

Ir+l 'Ii 1r+1 p(1--W)12R" (n'+1)'

2n /n'(n'-I)' Ell' n4 +3,
w*= --0- I + ---0-.

/ n' + I \j n' + 1 1'( 1-- 1") 12R' (n' + I)'

Table 2. Comparison of the frequency parameter! = Why ((I - /1' )1'/E) for the free vibration of a
non-rotating truncated circular conical shell with simply-supported boundary condition (m = 1.

/1 = 0.3. h!b = 0.001. L sin1./b = 0.25)

1. = 30 1. = 45 1. = 60-
n Present Irie (1984) Present Irie (1984) Present Irie (1984)

2 0.8420 0.7910 0.7655 0.6879 0.6348 0.5722
3 0.7376 0.7284 0.7212 0.6973 0.6238 0.6001
4 0.6362 06352 0.6739 0.6664 0.6145 0.6054
5 0.5528 0.5531 0.6323 0.6304 0.6111 0.6077
6 0.4950 0.4949 0.6035 0.6032 0.6171 0.6159
7 0.4661 0.4653 0.5921 0.5918 0.6350 0.6343
8 0.4660 0.4654 0.6001 0.5992 0.6660 0.6650
9 0.4916 0.4892 0.6273 06257 0.7101 0.7084

(12)

(13)

(14)

where Li;{i,j = 1,2,3), as shown in Appendix A, are the differential operators of u, v and
IV and the coefficients related to these differential operators are functions of the coordinate
variable x.

For this set af partial differential equations (12)-(14), it is impossible to get directly
the numerical solutions by using the trial functions (11). However, when the shell of
revolution is a rotating cylindrical shell, it is possible to obtain directly the numerical
solutions because the coefficients of the partial differential equations of cylindrical shell are
then independent of x, i.e. constants (see Lam et al. 1995b).

As an example, consider the coefficient PI I related to U in the resulting equation after
substituting the trial function (I I) into equation (12). For the case of a cylindrical shell,
PI! = ell is a constant independent of the coordinate variable x, the expression of which is
as follows:
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(15)

where AJi = 1,6) are the tensile stiffness in the constitutive relations of the conical shell
and are given in Appendix A. For conical shell, however, P il = Pll(x), i.e. a function of
the coordinate variable x, the expression of which is written as:

_ _ w
2phL2- A 1 1m2n2 (mnx) A I1mn sin a. . (mnx)

PII - PIl(X) - cos -L - L( . )SIn L
L 2 a+xSIna.

(16)

Thus, for the cylindrical shell, Pi; = C;)i,j = 1,2,3) are constants, so we can calculate
directly its eigenvalues (see Lam et al., 1995b). But for the conical shell, as
Pij = Pjx)(i,j = 1,2,3), we should first use some approximate numerical methods, such as
the Galerkin's method which will be used in this paper, in the governing equations so as to
obtain the coefficients Cji,j = 1,2,3) independent of the coordinate variable x. In this
way, we can then obtain the eigenvalues discussed in the paper. This is the main difference
between the analyses of the free vibrations of a rotating conical shell and a rotating
cylindrical shell. This is also the main reason why the analysis of free vibration of a rotating
conical shell is much more difficult and complicated than that of a rotating cylindrical shell.

By substituting the trial function (11) into equations (12)-(14), the use of Galerkin's
method results in :

rrf(PIlU+Pl2V+PI3W)UdXd8dt=0J, JB ~

rff(P 21 U+P22 V+Pn W)l'dxd8dt = 0J, (} x

r r J~ (P3l U+P32 V+P 33 W)wdxd8dt = O.J, Jo x

(17)

(18)

(19)

After performing the integrations, equations (17)-( 19) can be written in the following
matrix form:

CI2 CI3

Cn C 23

C 32 C 33

(20)

where the coefficients C;)i,j = I, 2, 3) are some very complicated and long expressions in
terms of material constants and geometric parameters. CII is the simplest one amongst all
the coefficients Ci; and is given for information in Appendix B.

For equation (20) to have non-trivial solutions, the determinant of the characteristic
matrix in the above equation is set equal to zero,
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C II C IC C.1
CC I C2C C2 .1

ell C.12 C.1.1

= o. (21 )

Expanding equation (21) can yield the following equation,

(22)

The equation (22) has six roots. From our calculating results, it is known that the two roots
whose absolute values are the smallest are real numbers, one positive and the other negative.
These two eigenvalues of real numbers correspond to the backward and forward travelling
waves as well as to the positive and negative rotating speeds of the conical shell, respectively.
A detailed discussion of the two eigenvalues of the real numbers will be made in the next
section.

NUMERICAL RESULTS AND DISCUSSION

To examine the accuracy of the present work, two comparisons with results in the
open literature are made. The first involves free vibration of a rotating cylindrical shell by
taking CI. = 0 in the present formulations. The conical shell hence becomes a cylindrical
shell. The second involves the free vibration of a non-rotating conical shell by taking Q = 0
in the present formulations. The results obtained are shown in Tables I and 2.

For ease of discussion and comparison with results available in the literature, a
frequency parameterfis used; herefis defined as

/----,-

. 1(1-w)p
f= wb _I .. \I E

(23)

By examining Tables I and 2, it can be seen that the present formulations agree very
well with the results available in the literature (Chen et al.. 1993; Irie et al., 1984), indicating
the accuracy of the present work.

The frequency parameter of the free vibration solution of a rotating conical shell is a
function of the rotating speed. At a given rotating speed, the eigensolution for each mode
of the vibration, i.e. for each pair of the wave numbers (m, n), where m is the meridional
wave number and n is the circumferential wave number, consisted of a positive and a
negative eigenvalue mentioned above. These two eigenvalues corresponded to the backward
and forward travelling waves or the positive and negative rotating speeds of the conical
shell, respectively. The positive eigenvalue corresponded to the backward waves due to a
rotation Q > 0 and the negative eigenvalue corresponded to the forward waves due to a
rotation Q < O. In the case of a stationary conical shell, these two eigenvalues are identical
and the vibrational motion of the conical shell is hence a standing wave motion. However,
when the conical shell starts to rotate, the standing wave motion will be transformed and
depending on the rotating direction, backward or forward waves will be present. It can be
shown that the absolute values of the backward waves are always larger than those of
forward waves through the analysis of the present numerical results.

In this paper, studies on the vibration of a truncated circular rotating conical shell are
presented. The studies focused on the relationship between the frequency parameter! and
the circumferential wave number n at various rotating speeds and cone angles. Results are
also presented for the relationship between the frequency parameter f and rotating speed
Q for various cone angles and geometric properties (L/a ratios). The variations of frequency
parameter at various modes of free vibration and rotating speed of the truncated cone are
also presented.
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Fig. 2. Relationship between the frequency parameter f and circumferential wave number n at
various rotating speeds for cone angle 7. = 5 (m = I. /l = 0.3. h.a = 0.02. Va = 20).
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Fig. 3. Relationship between the frequency parameter t and circumferential wave number 11 at
various rotating speeds for cone angle 7. = IS (m = 1.!1 = 0.3. h:a = 0.02. La = 20).

In the presentation of results, the backward wave is represented by a solid line and the
forward wave by a dashed line; the unit for rotating speed n is rps (revolutions per second
or Hz).

Figures 2-6 present the frequency characteristics of free vibrations for the truncated
circular rotating conical shell with simply-supported boundary conditions at both ends.
Results are presented for five different cone angles, namely, (J. = 5 , 15, 30,45 and 60°,
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Fig. 4. Relationship between the frequency parameter f and circumferential wave number n at
various rotating speeds for cone angle Y. = 30 (111 = 1.11 = 0.3. h.a = 0.02. La = 20).

10.-------------------------,
-- Backward wave
- - - Forward wave

o !l = 0 rps
8 0 !l=lrps

o !l=4rps
• !l = 8 rps
c,. !l = 16 rps

6

n

Fig. 5. Relationship between the frequency parameter f and cIrcumferential wave number n at
various rotating speeds for cone angle Y. = 45 (111 = 1.11 = 0.3. h a = 0.02. La = 20).

at five different rotating speeds, Q = 0, 1,4, 8 and 16. From the figures, it can be seen that
for the case of a stationary cone, Q = 0, a standing wave is obtained. For other values of
Q, backward and forward waves are obtained, depending on the sign of the eigenvalue.
From the figures, it can also be seen that the frequency parameterfincreases with increasing
rotating speed at the same circumferential wave number n or with increasing circumferential
wave number at the same rotating speed.
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Fig. 6. Relationship between the frequency parameter! and circumferential \-..-ave number 11 at
variou5 rotating speeds for cone angle ~ = 60 (til = I. Ii = 0.3, h:a = 0.02, La = 20).

L2r-------------------,

f

-- Backward wave
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• Cl =45°

0.8 6 Cl =60°
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- - - --0 - - -0- - - 0---0---0 - - D- - -0- ---0 --

o 10

Fig. 7. Relationship between the frequency parameter/and rotating speed Q (rps = revolutions per
second or Hz) at various cone angle x (til = L 11 = 2. fl = 0.3, h/a = 0.0 I. La = IS).

The variations of frequency parameter / against rotating speed Q for various cone
angle :x are shown in Fig. 7. The effects of geometric properties are also considered and
shown in Fig. 8 and Table 3. In Fig. 8, the variations of frequency parameter against
rotating speed for various geometric coefficient L/a are plotted. It can be seen that frequency
parameter increases significantly with increasing rotating speed at a fixed L/a; also at a
fixed rotating speed, the frequency increases with increasing L/a; hence it can be concluded
that the Va ratios have significant influence on the frequency parameter(.
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12
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o
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o Lla= 15
o Lla = 20
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Fig. S. Relationship between the frequency parameterfand rotating speed Q (rps = revolutions per
second or Hz) at various non-dimensional geometric coefficient La (m = I, n = 2, ~ = 45 ,

1/ = 0,3, h/a = 0.02).

Table 3. Effects of the non-dimensional geometric coefficient h/a of a simply-
supported conical shell on the frequency characteristics (m = I. n =)

i1 = 0.3, ~ = 45 , L a = 20)

h/a = 0.002 ha = 0.006
Q (rpsi II> f II> I,. ,

0 049115 049115 049116 049116
I 0.51816 047932 051817 047933
2 0.55968 048197 0.55969 04S 198
3 06139S 049735 061399 049736
4 o67S80 0.52318 0.67881 0.52319
5 0.75194 0.55722 075195 0.55723
6 O.S3147 0.59753 0.S3148 0,59754
7 0.91587 0.64257 0.91588 0.64258
S 1.00397 0.69115 1.00398 0.69116
9 1.09490 0.74236 1.09490 0.74236

10 1.18797 0.79550 1.18797 0.79551

h/a = 0.01 ha = 0.02
Q (rps) I; If t: t;
--,---~--_ .. _. ~--

0 049119 049119 049140 049140
I O.51S19 047935 051831 047946
2 0.55972 04820 I 0.55983 04S211
3 0.61401 04973S 061411 049748
4 o678S3 0.52321 0.67893 0.52330
5 0.75196 0.55725 0.75205 0.55733
6 0.83149 0.59756 0.83157 0.59764
7 0.91589 064260 091597 0.64267
8 1.00399 0.69117 1.00406 0.69124
9 1.09492 074237 1.09498 0.74243

10 1.18798 079552 1.18804 0.79557

However, the same cannot be concluded on the effects of the geometric property h/a,
From Table 3. the frequency parameter for both backward and forward waves at various
rotating speeds and h/a ratios are tabulated. It can be seen that the effects of the h/a ratios
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Fig. 9. Relationship between the frequency parameter f at various modes of free vibration and
rotating speed Q (p = 0.3, 'l. = 45 . h a = 0.02. [fa = 20).

of the simply-supported truncated circular conical shell on the frequency characteristics are
very small when compared with other geometry properties. for example, the cone angle rx
and the L/a ratio.

The variations of frequency parameter/against rotating speed of the truncated circular
conical shell for various modes (m, n) of vibration, where m and n are the meridional and
circumferential wave numbers of the vibrations, are shown in Figs 9(a) and (b). The figures
show that the mode (2,2) has higher backward and forward waves frequencies than the
mode (1,2). The same characteristic is also observed between the modes (2,4) and (1,4).
When the rotating speed became greater. the frequencies for the backward and forward
waves at any mode of the vibration (m. n) are observed to increase linearly with the
rotational speed.
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CONCLUSIONS

2195

A method for studying the vibration of a rotating truncated circular conical shell has
been presented. In the present paper, only simply-supported boundary conditions are
considered. Parametric studies on the frequency characteristics at different modes of
vibration, geometric properties and rotating speeds are presented. The results from the
present analysis are also compared with those available in the literatures involving a very
long rotating cylindrical shell and a stationary conical shell and very good agreement is
obtained.
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APPENDIX A

The differential operators L" in the equations (12)-( 14) are given as follows:

L II

Ace sin' ~ 1" (A," ,'[' A'I sin~ (' ?'- --_... - ph - + --- + Q- ph - + ---- c;- + A II ,-

r'(x) h' r'(x) ) to' r(x) cx ?x'

A" cos ~ sin ~ (. A I ,cos~, ) t
L" = - _. + --'--- -Q'phr(x)cos~ ::-

r'(x) r(x) , ('x

(AI)

(A2)

(A3)

. (' ((A"+A"")Sin~ , _ ') (' (! _ (A'I +A 66 )) 1"
L" = -2QphsLn~c:;-+ . .. +Q-phsLn~ C;-/i+ Q-phr(x)+ -) ~(J

(t r'(x) ( r(x ('xu
(M)
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4D ,., , , "( , \ """ cos' '1 SIn- '1 A"" SIn' '1 C D" cos' '1 A" ) I"
L,,= - -ph-+ +---

r 4 (x) r'(x) rt' r'(x) r'(x) NJ'

(
4D66 COS" '1 sin '1 .1 6" sin '1, ,,) (,c (2D" co,s' '1 ) C'

- - --- -O'phr(x) SInrJ. c;- + _._-- +.1 66 -,

r'(x) rex) / (X ,r'(x) ax'
(AS)

r'(x)

(D" -4D,,)cos'1sin'1 (C,
--_._._--,._._.--- --

rxrli

(D" + 2D",,) cos '1

r'(x)

, 1
(

Z'x'rli
(A6)

L"
A" cos '1 sin '1, ,(A, ,COS '1 , ') r

- .. +O'phcos'1sIn'1--'-- +Q'phr(x) COS '1 c;-
r'(x) , r(x) (X

(A7)

( D., COS '1 (C,

L" = 2Qphcos'1-;c- ~ -"---
ct r'(x) NJ 3

~ (2(D" +D" +4D66 )COS'1,Sl!1' '1 _ A" COS'1)l-

r'(x) r'(x) rli

(2D"+D,,+SD6,,lcos'1sin'1 (, (D,,+4D 66 )cos'1 c'".-- , - + ~-, (AS)
r' (x) (X rlIl r' (x) rx' ae

_ (2(D" +D" +4D").21!1~2 ~Q'Ph)\ (,C, _ D" sin' '1 ~
r' (x) (iii' r 3 (x) ex

2(D" + 4D",,) sin '1 I" D" sin' '1 ("+ --+--_.---

r'(x) (xrO' r'(x) (X'

r'(x)
(A9)

here, .1'1 and D'I are the tensile and bending stiffnesses. respectively. in the constitutive equations (9). For the
present isotropic conical shell.

Eh
.1,,=.1,,= --

.. (1-/1')

/1Eh- _._~--

Eh
4 =~~
. 6" 2( 1+ /1)

Eh'
D" = D" =----

.. 12(I-p') 12( I ,p')

Eh'
D" = 12(1 + /1) .

(AIO)

APPENDIX B

CII. which is the simplest expression amongst all the coefficients Cu in the equation (20), is given here for
infonnation:

I- h.1"mrr cos('1- (2amrr csc '1) L)Ci(2nl11 + (2amrr csc '1),' L)

I
+ h.1"mrrcos('1 + (2anl11 csc '1) L)Ci(2mrr + (2anl11 csc '1); L)

1 , ,- 2h .1""mwrrcos('1- (2amrr csc '1) L)Ci(2mrr+ (2amrr csc '1) L) csc '1

I
+ 2b .1 6"mn'rrcos('1+ (2anmcsc '1): L)Ci(2nm+ (2amrr csc '1) L) csc' '1



here.

Rotating truncated circular conical shell

I
- 2L A i I mnCi(2amn csc~!L) sin(2amncsc CL L)

I
+ L A"mnCi(2amncsc ~ L) sin(2anm esc ~ L)

I
+ 2i A II mnCi(2mn+ (2amncsc ~)L) sin(2amncsc ~:L)

I
+ L(Annmn'nCi(2amncsc~L)csc' ~sin(2amncsc~;L))

u
- Lh (A"mnCi(2mn+(2amncsc~)L) sin(2amncsc~L))

u , '
- Lh(A nn mn-nCi(2mn + (2amn csc~) L) esc- ~ sin(2amn esc ~:L))

I
+ 2L (Allmncos(2umncsc~L)Si(2unmcsc~L))

1
- L(A"mncos(2umncsc~L)Si(2umncsc~ L))

I, ,
L (AOhmwncos(2umncsc~,L)csc ~Si(2umncsc~:L))

I- 2L (A II mn cos(2amn esc ~L)Si(2mn + (2umn esc ~), L))

a
+ Lh (A"mn cos(2amn esc ~L)Si(2nm + (2amn esc ~L L))

u, ,
~ Lh (A'hmwnCos(2amncsc~,L) csc ~Si(2mn+ (2amn esc ~): L))

I
+ Ih (A"mn sin(~ - (2amn csc~) L)Si(2mn + (2wnn csc~) L))

I "+ Ih (A",mwn csc- ~ sin(~ - (2unm csc~) L)Si(2mn+ (2umn csc~) L))

I
+ 2h (A "mn sin(~+ (2amn csc~) L)Si(2mn + (2amn csc~)'L))

1 "
~ 2h (Ahnmn-ncsc- ~ sin(~+ (2umn csc:x) L)Si(2mn+ (2umn csc:x) L))
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(BI)

I
', sin( t)

Si(x) = -'-' dl
., n 1 I

',' cos(l)
Ci(\) = - -- dl

I

I
csc:x = -,-,

SIn :x
(B2)

It is clear that C I ; for a conical shell is a very complicated expression in terms of material constants and geometric
parameters when compared with C II for a cylindrical shell (see Lam cl at 1995b). which is:

L(', .' AII,m'n' _ A,ol1')",
CII =-2 (lrph-Q'phw-

L' R'

The same holds for other C,(i./ = I. 2. 3),

(B3)


